If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-36y+72=0
a = 1; b = -36; c = +72;
Δ = b2-4ac
Δ = -362-4·1·72
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12\sqrt{7}}{2*1}=\frac{36-12\sqrt{7}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12\sqrt{7}}{2*1}=\frac{36+12\sqrt{7}}{2} $
| 2x+1.x=8 | | 18u+u-9u-8u=12 | | 2x+1x=8 | | 10x+8=4x+9 | | 3/4y-1=12 | | 3r+2r=-20 | | 1x+8=2x+6 | | 12-3v=27 | | b-b+b=20 | | X+2=2/y | | 128=8(3v-8) | | -5v+-7v+-2v-4v=18 | | (14c)=14 | | 3(2x+5)-x=19x+20 | | 9d+3d-9d+d+d=10 | | 4x+59=7x-25 | | 3(2x+5)-x=16x+20 | | 2x+21-15x=30+2x | | 3(2x+5)-x=17x+20 | | 3(2x+5)-x=17x+1 | | 0,2v=0.6v+1.7 | | 3(2x+5)-x=17x+11 | | x/5+6*2=32 | | 8x-8-8=16 | | -11=n+7 | | 3(2x+5)-x=1x+11 | | -m(-19m)-12m=12m=-12 | | 3(2x+5)-x=1x+9 | | 3(2x+5)-x=1x+7 | | 26+7=15x | | 3(2x+5)-x=1x+6 | | a+6=-8 |